
DMFS - A Data Migration File System for NetBSD

William Studenmund

Veridian MRJ Technology Solutions

NASA�Ames Research Center"

Abstract

! have recently developed DMFS, a Data Migration File

System, for NetBSD[I]. This file system provides ker-

nel support for the data migration system being devel-

oped by my research group at NASA/Ames. The file

system utilizes an underlying file store to provide the file

backing, and coordinates user and system access to the

files. It stores its internal metadata in a flat file, which

resides on a separate file system. This paper will first

describe our data migration system to provide a context

for DMFS, then it will describe DMFS. It also will de-

scribe the changes to NetBSD needed to make DMFS

work. Then it will give an overview of the file archival

and restoration procedures, and describe how some typi-

cal user actions are modified by DMFS. Lastly, the paper

will present simple performance measurements which

indicate that there is little performance loss due to the

use of the DMFS layer.

1 Introduction

NAStore 3 is the third-generation of mass storage sys-

tems to be developed at NAS, the Numerical Aerospace

Simulation facility, located at the NASA Ames Research

Center. It consists of three main parts: the volume man-

agement system (volman), the virtual volume manage-

ment system (vvm), and the DMFS (data migration file

system) system.

A complete description of the NAStore 3 system is be-

yond the scope of this document. 1 will give a brief

overview, and then descrive DMFS's role in NAStore 3.

1.1 volman system

The volman system is responsible for keeping track of

the tapes, and for bringing them on line when requested.

• Present address: Zembu Labs, 445 Sherman Avenue, Palo Alto

CA 94306, wrstuden@zembu.com

It was designed to support the mass storage systems de-

ployed here at NAS under the NAStore 2 system. That

system supported a total of twenty StorageTek NearLine

tape silos at two locations, each with up to four tape

drives each. Each silo contained upwards of 5000 tapes,

and had robotic pass-throughs to adjoining silos.

The volman system is designed using a client-server

model, and consists of three main components: the vol-

man master, possibly multiple volman servers, and vol-

man clients. The volman servers connect to each tape

silo, mount and unmount tapes at the direction of the

volman master, and provide tape services to clients. The

volman master maintains a database of known tapes and

locations, and directs the tape servers to move and mount

tapes to service client requests. The client component

consists of a set of programs to monitor activity and tape

quotas, and a programmatic interface so that programs

can make requests of the volman master and servers.

1.2 vvm system

The vvm system provides a virtual volume (or virtual

tape) abstraction and interface for client programs. Its

main utility is to improve tape usage efficiency. Many

streaming tape technologies do not handle writing small

files efficiently. For instance, a seven kilobyte file might

take up almost as much tape space as a one megabyte

file. To better handle such cases, vvm clients (such as the

DMFS system) read and write files out of and into virtual

volumes (vv's), which are typically between 50 and 300

megabytes in size. These vv's are read and written to

tape. Thus all tape operations involve large reads and

writes which are much more efficient.

The vvm system consists of a server, client programs,

and a tape server daemon. The vvm server is respon-

sible for remembering which vv's have been allocated,

and on which tape volume they reside. When a vvm

client requests a vv, the vvm server contacts the volman

system (the volman master specifically) to arrange for

the needed tape volume to be mounted. The vvm tape





server daemon, which runs on the same machine as the

volman tape servers, then reads the tapes and makes the

vv available to the client. The clients obviously use the

vv's to store variable-length files. There are client pro-

grams which are able to monitor the status of vv's, and

there is a programmatic interface which lets programs

make requests of the vvm system.

1.3 DMFS system

The final component of the NAStore system is the

DMFS system. This consists of dmfsd, the DMFS data

migration daemon, system utilities to assist file migra-

tion, and the DMFS file system (the focus of this paper).

dmfsd is the data migration daemon, and it runs on each

host supporting a DMFS file system. It is responsible

for responding to requests from the DMFS file system

for file restoration. The userland system utilities in the

DMFS system are responsible for archiving files and for

making them non-resident. There are also utilities to per-

mit users to force the archival or restoration of specific

files.

2 Description of DMFS

The DMFS file system is the part of NAStore 3 with

which most end-user interaction happens. It maintains as

much of a traditional UNIX user experience as possible

while providing data migration services.

2.1 Layered file system

One of the main differences between DMFS and other

migration file systems (such as RASHFS, the NAStore

2 file system, or HighLight[3]) is that it is a layered file

system. These other file systems merge the data migra-

tion code into the file system code, while DMFS uses

the layered file system formalism to place its migration

code between most kernel accesses and the underlying

file system.

We perceived two main advantages and one potential

disadvantage with this design choice. The first advan-

tage we perceived is that it would be much easier to cre-

ate and maintain a layered file system with data migra-

tion facilities than to add those facilities to a specific file

system and maintain them over the long term. For in-

stance, the Berkeley Fast File System (FFS)[4, 5] is un-

dergoing change with the addition of soft updates[7]. By

maintaining the file migration functionality separately,

we decouple DMFS from any other FFS-related devel-

opment. Secondly, we leave the choice of underlying file

system to the site administrators. If the access patterns

of a site are better suited to the Berkeley Log-structured

File System (LFS)[4, 6], then a site can use that as the

underlying file store rather than LFS. The only limita-

tions are that the underlying file system support vnode

generation numbers, and the current metadata database

requires knowledge of the maximum number of vnodes

at the time of initial configuration.

The one potential disadvantage is that the use of layered

file systems incurs a certain amount of overhead for each

file system operation. In [2], Heidemann measures lay-

ered file system overhead to be on the order of a few

percent. Section 7 will describe the limited testing we
have done to date. The conclusion we have reached is

that any performance penalties due to layered file system

technology are certainly worth the benefits in maintain-

ability and flexibility.

2.2 Functions

The primary function of the DMFS file system layer is

to provide user processes transparent access to migrated

data. It determines if an operation would access non-

resident portions of the underlying file. If so, it re-

quests that the dmfsd daemon restore the file, and then

blocks the operation until the file is sufficiently restored

so that the operation may proceed. One feature present

in DMFS is that when a process is blocked awaiting file

restoration, it may be interrupted. As a practical matter,

a user may kill (AC) a blocked process.

Another main function of the DMFS layer also is to pre-

serve the integrity of the metadata it and the userland

dmfsd databases keep regarding files, it does so in two

ways.

First, it records the generation number of the underlying

vnode. When an operation (such as name lookup) causes

the allocation ofa DMFS vnode, the recorded generation

number is compared with the generation number of the

underlying vnode. In case of a discrepancy, the informa-

tion in both the kernel and userland databases is inval-

idated. Likewise these databases are invalidated when

the last reference to an unlinked vnode is released.

The second area of metadata preservation keeps a file

from getting in an inconsistent state. The present

metadata format permits recording that a portion of an

archived file is resident, but does not permit noting that

only a portion of a file is archived. The possibility of

file inconsistency would arise if the on-disk portion of





needed a more robust implementation,

The changes described below, especially those of sec-

tions 3.3 and 3.4, were implemented at the same time,

in addition null_lookup0 was modified 3. As such, it is

not clear which change (if any) was singularly respon-

sible for the increase in robustness, though I suspect the

change to null_lookup0 represents most of it.

After these changes were implemented, I performed a

few simple tests to ensure their effectiveness. The first

one was to perform a multi-process kernel make in a

directory on a NULLFS file system (cd into a kernel

compile directory and type make -j 8). Before these

changes, such an action would promptly panic the ker-

nel. After these changes, it did not. Additionally, simul-

taneous access of multiple NULL layers and the under-

lying layer, such as the parallel make above combined

with recursive finds in the other layers, have not been

observed to panic the system. The DMFS layer we have

built based on this NULLFS layer has shown no difficul-

ties (panics or otherwise) due to simultaneous multi-user

access in almost one year of operation.

It should be noted that the NULLFS and UMAP layered

file systems have benefited from these changes, while

the UNION file system has not. It is still not considered

production quality.

3.3 Most file systems do real locking

To better support the vnode locking and chaining de-

scribed in the next section, all file systems (except for

UNIONFS and NFS) were changed to do vnode lock-

ing. Previously only file systems with on-disk storage

actually did vnode locking, while the others merely re-

turned success. As of NetBSD 1.5, the NFS file system

is the only leaf file system which does not do real vnode

locking. This defect remains as lock release and reacqui-

sition during RPC calls to the NFS server has not been

implemented. As mentioned above, the UNION file sys-

tem has not been updated with these locking changes.

While it is not likely that one would want to layer a file

system above many of the file systems which gained true

locking (such as the KERNFS layer), this change makes

it easier to impliment layered file systems. Lock man-

agement is one of the keys of getting layered file sys-

tems to work. By being able to rely on all leaf vnodes

3it now calls the underlying lookup routinedirectly ratherthan us-
ing the bypass routine. It also checks for the case of a lookup of ".".
where the returned vnode is the same as the vnode of the directory in
which the lookup was performed andhandles it explicitly.

doing locking, the layered locking becomes much eas-

ier. Additionally the changes to add this support were

not difficult.

3.4 New vnode lock location and chaining

One change made in how vnodes are locked was to im-

plement vnode lock chaining similar to what Heidemann

described in [2]. After this change, each vnode contains

a pointer to a lock structure which exports the lock struc-

ture used for this vnode. If this pointer is non-null, a

layered file system will directly access this lock struc-

ture for locking and unlocking the layered vnode. If

this pointer is null, the layered file system will call the

underlying file system's lock and unlock routines when

needed, and will maintain a private lock on its vnode. As

described in the preceding section, all leaf file systems

other than NFS now do locking, and thus export a lock

structure. Once NFS has been fixed, the only file sys-

tems which should not export a lock structure would be

layered file systems which perform fan-out (such as the

UNIONfile system) as they need to perform more com-

plicated locking.

As all file systems should be doing locking and export-

ing a pointer to a lock structure, I decided to add a lock
structure to the vnode structure and remove it from all of

the leaf file systems' private data. I was concerned about

a whole stack of vnodes referring to file system-specific

private data, and felt it cleaner for vnodes to refer to

memory contained in vnodes. In retrospect (and having

completed the change), it now seems wiser to leave the

lock structure in the leaf file system's private data and

just require the file system be careful about managing

the memory it exports in the lock structure pointer in its

vnode. This change would improve memory usage in a

system with multiple layered file systems by not allocat-

ing a lock structure in the layered vnodes which would

go unused.

The effect of this change is that a whole stack of vn-

odes will lock and unlock simultaneously. At first glance

this change seems unimportant, as any locking operation
can traverse a vnode stack and interact with the under-

lying leaf file system. The advantage is three-fold. One

advantage is conceptual. By having all layers use the

same lock structure, the commonality of the stack is re-

inforced. Secondly, layered nodes do not need to call the

underlying file system if the lock structure has been ex-

ported - it may directly manipulate it itself. This lack of

stack traversal becomes quite advantageous in the case

of multiple layered file systems on top of each other.





Thethirdadvantageisduetothelocksemanticsofthe
lookupoperationon"..".Toavoiddeadlock,directories
arelockedfromparenttochild,startingwiththeroot
vnode.Topreservethiswhenlookingup"..",thechild
directorymustbeunlocked,theparentlocked,andthe
childthenre-locked.Whenlookingup".."inalayered
filesystem,withaunifiedlock,theleaffilesystemcan
unlocktheentirestackandre-lockitwhiletryingtoob-
taintheparentnode.If thelockswerenotunifiedand
therewereseparatelocksinvnodesstackedabovethe
leafone,theleaffilesystemwouldeitherneedtosome-
howunlockandre-lockthoselocksduringthelookupof
".."ortoruntheriskofdeadlockwhereoneprocesshad
theupperlock(s)andnotthelower,whileanotherhad
thelowerandnottheupper.

DMFS also uses this library of routines. Of the 19 vn-

ode operations handled by DMFS, 20% consist solely of

calls into this library.

3.7 File Handles usable in the context of a local
filestore

When communicating with the userland daemon dmfsd,

DMFS uses file handles to refer to specific files. It

does this because on all of the occasions where it

needs to communicate with dmfsd (for instance in a

VOP_READ0 attempting to access non-resident data)

none of the potentially multiple paths to this file are
available.

3.5 New flag returned by lookup:
PDIRUNLOCK

One other change has been to plug a semantic hole in the

error reporting of the lookup operation. In case of an er-

ror, the lookup operation in a leaf file system is supposed

to return with the directory vnode in which it was look-

ing locked. One potential problem with this is that it is

possible that the error being returned resulted from not

being able to reacquire the lock on the examined direc-

tory when looking up "..". In this scenario, the lookup

routine has little choice but to return an error with the

examined directory unlocked. It signals this behavior by

setting the PDIRUNLOCK flag which is returned to the

caller. When a layered file system is maintaining its own

parallel locks (if the underlying file system did not ex-

port a lock structure), the layered file system must adjust

its locks accordingly.

3.6 "layerfs" library added

To make file handles truly useful in this manner, two

changes were made to the kernel. First, three new system

calls were added: fhopen(2), fhstat(2), and fhstatfs(2).

For security reasons, all three calls are restricted to the

superuser, fhopen(2) is similar to open(2) except that the

file must already exist, and that it is referenced via a file

handle rather than a path. fhstat(2) and fhstatfs(2) are

similar to Istat(2) and statfs(2) except that they take file

handles rather than paths.

The other change modified the operation of file handle

to vnode conversion. In 4.4BSD, the only use of file

handles was with network-exported file systems, specif-

ically by the NFS server module. For convenience, the

VFS operation which did file handle to vnode conver-

sion also did foreign host export credential verification.

Obviously that combination is not appropriate for a ter-

tiary storage system. So ! changed the VFS_FHTOVP0

operation to just do the file handle to vnode conversion,

and added a separate VFS_CHECKEXP0 operation to

handle the export verification.

Before NetBSD 1.5, most NetBSD layered file sys-

tems other than UNIONFS were based on copies of

NULLFS. Typically the NULLFS files were copied and

renamed, the routine names were changed (the "null_"

prefix changed to reflect the new file system name), and

then new features were added. This behavior represents

a duplication of code. In order to reduce this duplication,

there is now a library of common files, "layerfs," which

provide most of the NULL layer functionality. For in-

stance the NULL layer now consists of a mount routine

and vnode interface structures. The rest of the routines

are in the layerfs library. The UMAP layer now shares

most all of these routines, with the only difference being

that it has some customized routines (bypass, lookup,

and a few others) which perform its credential mapping.

3.8 VOP_FCNTL added

One feature which was needed by dmfsd and the other

utilities was an ability to perform arbitrary operations,

such as start archive, finish restore, etc., on the file(s)

which it was manipulating. At the same time we were

addressing this need, there was a desire to add the ca-

pability to perform file/inode operations. One such ex-

ample is adding the ability to manipulate access control

lists on file systems which support them.

These operations would be similar at the VFS level to

ioctl(2)s except that they would always reach the file

system, rather than possibly being dispatched to device

drivers as is the case for ioctl(2)s.





Arw-r--r-- 1 wrstuden mss 2202790 Sep 14 15:14

arw-r--r-- 1 wrstuden mss 7537 Nov 9 17:27

-rw-r--r-- I wrstuden mss 36854 Dec 6 15:28

Figurel:Sampledirecto_listing

Inside_AT.pdf

dmfs.h

ktrace.out

While there was no objection to adding this extension

to the VFS interface, the lbrm of its programmatic in-

terface generated controversy and much discussion on

NetBSD's kernel technology email list. The desired in-

terface would consist of a file descriptor, a command

code, and a data argument (void "). There were three

options: add a new system call with this parameter sig-

nature, overload the fcntl(2) interface, or overload the

ioctl(2) interface.

In the end, I opted for using the fcntl(2) system call. The

main reasoning is that we should allocate the entire com-

mand space reserved for the new vnode operation now -

it would not be advisable to reserve some now and then

add more later. There are far fewer fcntl operations than

ioctl operations in NetBSD, and they are less frequently

added, so it is less likely that using fcntl(2) as the pro-

grammatic interface and reserving a sizable command

space now will impede future kernel development. Ad-

ditionally, in the case of overlay-type layered file sys-

tems, different layered file systems will need to choose

unique codes, and pass codes they do not understand to

underlying file systems, so that tools designed to operate

on one particular file system type will operate regardless

of the depth of layered file systems. This requirement is

easier to satisfy with a spacious reservation of command

space.

The fcntl(2) system call takes an integer as its command

code. If the most significant bit is set, the operation is

now considered a request for a file system-specific op-

eration - a VOP FCNTL0 call. This division leaves

approximately 2^31 commands available for traditional

fcntl-type operations. The remaining 31 bits encode
whether a value or a structure are read into or out of the

kernel (3 bits), the size of data so transferred (12 bits),

and the actual command code (16 bits). Half of the com-

mand space (32768 commands) is reserved for NetBSD

use, while the remaining space is tbr a file system's pri-

vate use.

3.9 New Is-! reporting

One user feature added to support the data migration sys-

tem is a set of additional flags which indicate archive

state and which are displayed via the ls -1 command.

Files typically have a "-" in the left-most column. With

this change, an archived file has an "'a", and an archived,

non-resident file is indicated with an "A". This change

was implemented by increasing the functionality of the

strmode(3) subroutine, and by adding two extra flags to

the mode value returned by a stat(2) call. For instance in

the directory listing shown in Figure 1, it is clear that

the file dmfs .h has been archived, and the file In-

side_AT, pdf has both been archived and also been

made non-resident.

These flags are available for use by all file systems which

possess the concept of file archival attributes. For in-

stance, the NetBSD FAT (MS-DOS) file system imple-

mentation has been extended to indicate archival state

using this mechanism.

4 Archival

There are two ways for an archival to be initiated. One

is for a user to request a file be archived (and possibly

made non-resident) using the forcearc(8) utility. An-

other would be for an archival scan process to determine

that the file should be archived. After opening the file,

the first step is for the archiving process to perform the

DMFS SETAIP fcntl(2) operation, which sets the in-

ternal DM_AIP (archive in progress) flag. This opera-

tion will succeed if the process has root privileges and

if no other process is in the process of archiving the file.

The process ID for the file is noted for reference.

The second step of the archival process is for the archiver

to add the file to the dmfsd databases, and to copy the file

to tape storage. Adding the file to the dmfsd databases

might also involve initializing some of the metadata

fields such as the bfid, the unique identifier for this file.

The third step is for the archiving process to set the file's

DM ARCH flag, which indicates that the file has been

archived. The DMFS_SETARCH fcntl(2) operation

sets this flag.

Finally, if the file is to be made non-resident, the archiver

performs the DMFS_SETNONR fcntl(2), which takes
the amount of initial data which are to remain on the

underlying file system. The DMFS layer determines the

size of the underlying file, and, assuming it is greater





thantherequestedsize,it notestheunderlyingfilesize
inthearchivesizefield,andtruncatesit tothedesired
length.TheDM_NONRflagissetforthefilewhich
indicatesthatit isnottotallyresident.Fromthispoint,
thefilesizereportedwillbethatwhichwasnotedduring
thisoperationratherthantheactualsizeoftheremaining
portionondisk.

NAStore2truncatedallfilestozeroresidency.InNA-
Store3wehaveaddedtheabilitytoretainaportionof
thefileondisk.Fromouranalysisofsomenewstor-
agearchitectures,suchasMCAT/SRB,fileswillactu-
allybemanagedbystorageagentsratherthandirectly
bythegeneratingprogram.Oftensuchsystemswilladd
aheaderofmetadatatothebeginningofthefilewhich
servestodescribethewholefile.Byleavingthispor-
tionondisk,wepermitwhateveragentismanagingthe
storageofthesedatatoexaminethefile'sheaderwithout
triggeringarestoreevent.As the exact amount of stor-

age to leave on disk is a dependent on site and storage

broker configuration, we permit the archiving process to
determine how much of the file should remain.

At various points through the restore, the restore agent

may perform a DMFS_SETBBOUND fcntl(2). This

operation takes an o f f_c argument and adjusts the byte

barrier to this new value. Typically, as the file is re-

stored, this operation is used to move the byte barrier,

permitting blocked reads to complete as the file is re-

stored.

The final step for restoration is for the restore agent

to perform the DMFS_FIN1SHARC fcntl(2) and then

close the file. This fcntl(2) call will set a flag such that

when the file descriptor is closed, the file is marked fully

resident and all processes waiting for the restoration to

complete will be unblocked.

Finishing the restore is done as a two-step process to

better support executing non-resident files. Any process

attempting to execute the file will be blocked until after

the close operation of the restore agent is completed, en-

suring that the file will not be noted as being opened for

write while attempting to execute it.

5 Restoration

Like archival, restoration can also be triggered in one of

two ways. The most common method is for a user's ac-

cess of a file to trigger the restore, which is performed

by the dmfsd daemon. Another method is the use of the

frestore(8) program, which performs the restoration di-

rectly.

In either case, the restore agent opens the file, using

either the fhopen(2) or open(2) system calls, with the

O_ALT_IO flag set. This flag requires root privileges,

and will permit the process to access the underlying

file directly, rather than being blocked when accessing

a non-resident portion.

The next step is for the restoration process to

set the DM_RIP (Restore In Progress) flag us-

ing the DMFS_SETRIP fcntl(2). As with the

DMFS SETAIP fcntl(2), this will only succeed if no

other process is restoring the file.

Then the restore agent reads in the relevant virtual vol-

umes, and writes the non-resident portions of the file

to disk. As the file descriptor was opened with the

O_ALT_IO flag set, the write(2) calls will not be

bhx:ked and will restore the file on the underlying file

store.

6 Behavior of typical operations

The above sections have described how the DMFS sup-

port processes interacted with the DMFS layer. This sec-

tion describes how typical user process operations inter-

act with the DMFS layer.

6.1 read(2)

The read(2) operation is intercepted so that an attempt

to read a non-resident portion of a file is blocked until

either the data are restored, or the restoration fails. A

failed restoration returns an EIO error to the calling pro-

cess.

The behavior of the restoration-checking routine is fairly

simple. If no restoration is in progress, a message is sent

to the dmfsd daemon requesting a restore. Then, if the

operation was initiated by the NFS server subsystem 4,
the EAGAIN error is returned. For an NFSv3 mount, the

NFS subsystem will return the NFSERR_TRYLATER
error code 5.

4detected by the presence of the IO_KNONBLOCK flag to the

read, a flag set only by the NFS subsystem.

5Note that while NetBSD's NFS server understands this error code,

its NFS client does not. Thus NFS exporting a DMFS layer to NetBSD

clients will result in access to non-resident files returning errors Io the

application, Other NFS clients, such as the Solaris NFS client, will

block the access and periodically retry it.





Without DMFS With DMFS [

Creating with 10,000 64k writes 72 4- I 71 4- 1.4

Overwriting with I000 1024k writes 116 116

Overwriting with 100,000 8k writes 88.4 + 1.7 88.75 4- 0.5

Table I: Average operation times with standard deviations (secondsj

Then the routine enters a loop. It flags that it is waiting,

unlocks the vnode, and sleeps. The sleep is interruptible,

and if it is interrupted the system call will be retried.

This behavior permits users to abort a process waiting

for a restoration.

Upon re-awaking, the vnode is re-locked and the file

state is re-examined. If the restoration failed, EIO is re-

turned. If the blocked read can now progress, it is passed

down to the underlying layer.

For all read operations on nodes with valid DMFS meta-

data, the completion of the read operation is noted in the

atime metadata field.

6.2 write(2)

The write(2) operation is intercepted in much the same

manner as the read operation, and it calls the same

restoration-checking routine. The two main differences

are that the write operation is blocked until the file is

completely restored, and that the completion of a write

operation on an archived file triggers a message to the

dmfsd daemon that the file archive has been invalidated.

As mentioned above, the write operation is blocked until

the file is completely restored because the metadata for-

mat keeps archived state for the whole file, not subsec-
tions of it. Were a restoration to fail after a write mod-

ified part of an archived file, portions of the file would

still be archived and non-resident (needing to be restored

from tape), and other portions would be unarchived (and

thus must not be restored from tape). This limitation was

not considered significant for NAStore 3's target appli-

cations.

6.3 truncate(2)

Like writes, truncate operations invalidate the archived

copy of the file and are intercepted, and may be blocked

while file data are being restored. If the file is shrink-

ing so that all of the new size is presently resident, the

truncate operation proceeds. Otherwise a file restoration

is triggered. Unfortunately, at present there is no way to

request that only a portion of a file be restored, so the

whole file is restored and then truncated.

7 Performance

One drawback to the layered file design model is that it

adds a certain amount of overhead to each file operation,

even if the operation is merely bypassed to the underly-

ing layer. We have performed only simple performance

testing, but we have found little to no noticeable perfor-

mance degradation due to the DMFS layer.

One operation which will be potentially slower on the

DMFS layer is in-kernel vnode allocation, such as is the

result of a lookup operation. The allocation of the in-

kernel DMFS node requires reading the metadata for this
node from the metadata file.

We have performed extensive usage testing of our DMFS

layer. We have deployed two internal beta-test systems

using two different metadata storage formats (the one

described here and a predecessor which stored metadata

in a large-inode FFS). In this testing, which included

generating over two million files on a 155 GB file sys-

tem, none of the users complained that the DMFS layer

felt slow. Obviously an attempt to access a non-resident

file caused a delay, but that was due to the mechanical

delay of the robotics retrieving a tape.

We have performed a limited amount of quantitative test-

ing to compare the performance of reading and writing a

fully-resident file both with and without the DMFS layer

mounted. I performed three tests, all using dd to trans-

fer a file either from/dev/zero or to/dev/null. The dif-

ference between the tests was the block size used for the

operations.

All tests were performed on an IDE disk in an x86-based

computer running a modified version of NetBSD 1.4.

The file system was built using the default parameters

of 8k blocks and l k fragments. One test was to write

a 640 MB file using a write size of 64k. I observed a

strong disparity of new-file creation performance over

time. Initially file creation took 72 seconds, while later





creationstook82seconds.Asacomparabledecrease
wasobservedforcreationwithandwithouttheDMFS
layer,l attributethisdegradationtodiskandfilesys-
temperformance.Theexactoriginisnotimportant,but
thisobservationmotivatedallfurthertestingtoconsist

of overwriting an existing file.

I timed three creations without the DMFS layer, and two

with. The average times are shown on the first line of

Table l. 1 do not believe that the presence of the DMFS

layer actually improved the ITS pertbrmance, but that

the variability of times reflects the simplicity of the tests.

However the tests indicate that with 64k writes, the ex-

tra overhead of the DMFS layer was not noticeable and

that I/O scheduling and device performance will add an

amount of variability to the tests.

As shown on line two of Table I, creating a 1000 MB

file with I024k byte writes took the same amount of time

both with and without the DMFS layer. This example is

similar to the previous one in that the extra overhead of

the DMFS layer was not noticeable.

Both of the above tests used large write sizes to maxi-

mize performance. As such they minimized the number

of times the DMFS layer was called and thus the impact

of its additional computations. To better measure the call

overhead, I also tried writing with a smaller block size.

Line three of Table 1 shows the average times I observed

when using 8k writes. Here too, no statistically signifi-

cant difference was observed.

As I am using layered file system technology, I expect

a certain amount of overhead when accessing fully resi-

dent files. The rule of thumb estimate I am familiar with

is that this overhead should be on the order of one to two

percent. My simple tests measured less, and I believe

that the rule of thumb one to two percent is a good upper
bound.

8 Conclusion

This paper described DMFS, a layered file system de-

veloped for NetBSD to support a tertiary storage sys-

tem. It briefly described NAStore 3, the storage system

of which it is a part, and described DMFS in more de-

tail. It described the changes to NetBSD needed to sup-

port this work, gave an overview of how a system pro-

cess interacts with the DMFS layer to archive and restore

files, and touched on how some typical operations are

affected by the DMFS layer. Finally, It presented some

simple performance measurements which indicate that

while DMFS might impose a performance degradation,

it is not significant and that the rule of thumb value of

I to 2 percent is probably a reasonable upper bound for

the performance penalty.

Acknowledgements

This project would not have succeeded without the as-

sistance of others. I'd first like to thank Jason Thorpe

for his advice and assistance with many of the kernel

design issues raised in this work. My fellow NAStore

developers, Tom Proett and Bill Ross, helped me de-

vise how the kernel and NAStore programs interoperate.

Harry Waddell and John Lekashman, our management

team, encouraged and supported us during the entire de-

velopment cycle. Finally ! would like to thank Chris

Demetriou for his design suggestions and especially for

his review comments regarding this paper.

References

[I] The NetBSD Project, http://www.netbsd.org/

[2] J. S. Heidemann, Stackable Design of File Systems,

Ph.D. Dissertation, University of California, Los

Angeles (1995).

[3] J. Kohl, C. Staelin, M. Stonebraker, "HighLight:

Using a Log-structured File System for Tertiary

Storage Management", Proceedings of the San

Diego Usenix Conference, January 1993.

[4] M. McKusick, K. Bostic, M. Karels, J. Quarterman,

The Design and Implementation of the 4.4 BSD Op-

erating system, Addison-Wesley Publishing Com-

pany (1996).

[5] M. McKusick, W. Joy, S. Leffler, R. Fabry, ".4.

Fast File System for UNIX", ACM Transactions on

Computer Systems 2, 3. pp 181-197, August 1984.

[6] M. Seltzer, K. Bostic, M. McKusick, C. Staelin, "An

Implementation of a Log-Structured File System for

UNIX", Proceedings of the San Diego Usenix Con-

ference, pp 201-218. January 1993.

[7] M. McKusick, G. Ganger, "Soft Updates: A Tech-

nique for Eliminating Most Synchronous writes in

the Fast Filesystem", Proceedings of the Freenix

Track at the 1999 Usenix Annual Technical Confer-

ence, pp 1-17, January 1999.




